General Form of Equations of Straight Lines

- General Form of Equations of Straight Lines

General Form of Equations of Straight Lines

Below is the general form of the equation of a straight line.

The equation of a straight line can be expressed in the form

$$
A x+B y+C=0
$$

where A, B and C are constants with A and B not both zero. It is called the general form of the equation of a straight line.

General Form of Equations of Straight Lines

Example 1

Convert the following equations of straight lines into the general form.
(a) $3 y=7 x-2$
(b) $y=\frac{1}{4} x-5$
(c) $y+2=6(x+1)$
(a)

$$
\begin{aligned}
3 y & =7 x-2 \\
7 x-3 y-2 & =0 \\
y & =\frac{1}{4} x-5 \\
4 y & =x-20 \\
x-4 y-20 & =0
\end{aligned}
$$

(c)

$$
\begin{aligned}
y+2 & =6(x+1) \\
y+2 & =6 x+6 \\
6 x-y+4 & =0
\end{aligned}
$$

General Form of Equations of Straight Lines

Consider the equation of a straight line L written in the general form $A x+B y+C=0$.

Let us look at the three cases below.

Case	Equation of L	Remark
(1) $A=0, B \neq 0$	$B y+C=0$, i.e. $y=-\frac{C}{B}$	L is a horizontal line and its slope is 0.
(2) $B=0, A \neq 0$	$A x+C=0$, i.e. $x=-\frac{C}{A}$	L is a vertical line and its slope is undefined.
(3) $C=0, B \neq 0$,	$A x+B y=0$	L passes through the origin.

General Form of Equations of Straight Lines

We can get the intercepts and the slope easily from the general form of the equation of a straight line.

Consider the equation of a straight line in general form:

$$
A x+B y+C=0 \ldots \ldots \text { (1) } \quad \text {, where } A \neq 0 \text { and } B \neq 0 .
$$

To find the x-intercept, we put $y=0$ into (1).

$$
\begin{aligned}
A x+B(0)+C & =0 \\
x & =-\frac{C}{A}
\end{aligned}
$$

The x-intercept of the straight line $=-\frac{C}{A}$

General Form of Equations of Straight Lines

Consider the equation of a straight line in general form:

$$
A x+B y+C=0 \ldots \ldots \text { (1) } \quad \text {, where } A \neq 0 \text { and } B \neq 0 .
$$

To find the y-intercept, we put $x=0$ into (1).

$$
\begin{aligned}
A(0)+B y+C & =0 \\
y & =-\frac{C}{B}
\end{aligned}
$$

The y-intercept of the straight line $=-\frac{C}{B}$

General Form of Equations of Straight Lines

Consider the equation of a straight line in general form:

$$
A x+B y+C=0 \ldots \ldots \text { (1) } \quad \text {, where } A \neq 0 \text { and } B \neq 0 .
$$

Since the straight line cuts the x-axis at $\left(-\frac{C}{A}, 0\right)$, and the y-axis at $\left(0,-\frac{C}{B}\right)$,
The slope of the line $=\frac{-\frac{C}{B}-0}{0-\left(-\frac{C}{A}\right)}=-\frac{A}{B}$

$$
\text { Slope of the straight line }=-\frac{A}{B}
$$

General Form of Equations of Straight Lines

Example 2

(a) Find the slope, the x-intercept and the y-intercept of the straight line $L: 3 x-5 y+2=0$.
(b) Does the point $P(1,-1)$ lie on L ?
(c) L passes through a point $Q(h, 1)$. Find the value of h.
(a) Since $A=3, B=-5$ and $C=2$,

$$
\begin{aligned}
& \text { slope of } L=-\frac{3}{-5}=\frac{3}{\underline{5}} \\
& x \text {-intercept }=-\frac{2}{3} \\
& y \text {-intercept }=-\frac{2}{-5}=\frac{2}{5}
\end{aligned}
$$

General Form of Equations of Straight Lines

Example 2

(a) Find the slope, the x-intercept and the y-intercept of the straight line $L: 3 x-5 y+2=0$.
(b) Does the point $P(1,-1)$ lie on L ?
(c) L passes through a point $Q(h, 1)$. Find the value of h.
(b) Put $x=1$ and $y=-1$ into $3 x-5 y+2=0$.
L.H.S. $=3(1)-5(-1)+2=10$
R.H.S. $=0$
$\therefore \quad$ L.H.S. \neq R.H.S.
i.e. $(1,-1)$ does not satisfy the equation $3 x-5 y+2=0$.
$\therefore \quad P(1,-1)$ does not lie on L.

General Form of Equations of Straight Lines

Example 2

(a) Find the slope, the x-intercept and the y-intercept of the straight line $L: 3 x-5 y+2=0$.
(b) Does the point $P(1,-1)$ lie on L ?
(c) L passes through a point $Q(h, 1)$. Find the value of h.
(c) Put $x=h$ and $y=1$ into $3 x-5 y+2=0$.

$$
\begin{aligned}
3 h-5(1)+2 & =0 \\
3 h-3 & =0 \\
h & =\underline{1}
\end{aligned}
$$

